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The Use of Symmetry to S1mp11fy the Integral
'Equation Method with Application
to 6-Sided Circulator Resonators
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Abstract —In this paper it is shown that for planar two-dimensional
problems with symmetry, the dimensions of the matrices, which must be
inverted to obtain a solution using the integral equation method, can be
substantially reduced. For instance, for a three-fold symmetric hexagonal
circulator junction with N segments about the periphery, the dimension of
matrices to be inverted is reduced to N/3 from the usual N. It is
demonstrated that for six-sided resonators with three-fold symmetry, a very
good approximation to the equivalent admittance can be obtained with only
12 segments around the periphery, meaning that only 4 X4 matrices need
be inverted.

I. INTRODUCTION

NE OF THE MOST general methods for analyzing

arbitrarily shaped planar circuits is based on the con-
tour integral representation of the wave equation as pre-
sented by Okoshi and Miyoshi about 1970 [1], [2]. Initially
an isotropic dielectric was assumed. In 1977 the theory was
extended to include nonreciprocal circuits which use fer-
rites magnetized perpendicular to the conducting planes
[3]. A drawback of the contour integral method is the
relatively long computational times required for analysis
since, - for complex circuit patterns, large-dimensional
matrices must be inverted. Some methods are available for
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improving the computational efficiency for circuits with
special properties. One method is based on the observation
that the Green’s function suitable to the integral equation
method is not unique [4]. The arbitrariness of the Green’s
function can be used to optimize the accuracy of the
numerical results, or equivalently decrease the computa-
tional time necessary to obtain a given accuracy. The
second method takes advantage of symmetries in the planar
circuit. In the design of a 3-dB hybrid with two symmetry
planes Okoshi, Imai, and: Ito computed the reflection coef-
ficient from one of the four congruent quarter circuits for
each of the four eigenexcitations of the entire circuit [5].
The scattering parameters of the hybrid are then given as a
linear combination of these scattering matrix eigenvalues.
In this paper it will be shown in general how existing
symmetries of a junction may be used to simplify the
diagonalization of matrices. The computational effort is
reduced by a factor comparable with the order of symme-
try of the circuit.

Though planar junction, three-port circulators with six-
sided resonators constitute a natural application of the
integral equation method, and these circulators have been
built commercially for many years now, the method has
with one exception [6] not been applied to their analysis.
Consequently, it was felt to be worthwhile to combine a
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demonstration of the simplifications resulting from symme-
try with a detailed analysis of the frequency dependence of
the equivalent admittance of apex-coupled hexagonal-type
resonators with different coupling angles. It has been found
that with an appropriate choice of the Green’s function a
very good approximation to the equivalent admittance can
be obtained with only 12 segments around the periphery,
meaning that only 4X4 matrices need be inverted.

II. CIRCULAR RESONATORS AS AN EXAMPLE OF THE
USE OF SYMMETRY TO SIMPLIFY THE INTEGRAL
EqQuaTiON METHOD

The symmetrical three-port circulator with a circular
resonator presents a particularly nice application because,
in this case, it is possible to use symmetry arguments to
obtain a direct solution with the integral equation method,
without the need to use a matrix inverse operation. As a
result, the integral equation method can be as rapid as
analytical methods of obtaining the equivalent admittance
[7], [8]. From the integral equation it can be deduced that
the electric field £ at a point S, on the periphery of the
planar circuit can be expressed as [3]

B(s9) = 2 | joney GUR)H(s)
- k(cosa - jﬁsinﬁ)G’(kR)-E(s)] ds. (1)

The quantities H and G are the magnetic field and Green’s
function, respectively, while w is the frequency, p; the
effective permeability, p and « are the permeability tensor
components, and k£ = W el where ¢ is the dielectric con-
stant. The quantity R is the length of the vector R connect-
ing the points s,, s on the periphery while 4 is the angle R
makes with the normal to the periphery at s. For the
numerical evaluation of (1), the contour C can be divided
into N segments. If the number of segments is chosen large
enough all segments can be made so short that the fields
along each segment can be taken as constant. Equation (1)
can then be approximated by the following matrix equa-
tion:

[UE=[T]H. (2)

The elements of [U] and [T'] are given by

u,, = 2kI/Vn(cos 6,,, — j%sinﬂmn ) G'(kR,,,),

n®m (3)
Umm =1 (4)
];zn:jzwueffI/VnG(kRmn)* n7#m (5)

. 1 kW,
T;m:-]zwnu’effVVn[CO_ﬁ(ln ) _1+Y)] (6)
where
G(kRmn) = [% YO(kRmn)+ COJO(kRmn)]
G/(kRmn):[—%Yl(kRmn)kCOJI(kRmn)]

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-30, NO. 8, AUGUST 1982

and where m,n=1,2,---,N, W, is the width of segment »n
and the angle §,,,, and the distance R, are related to the

center points of segment m and n. In (3)-(6), the general
form of the Green’s function [14]

G=%1Y,(kR)+ Y C,J (kR )cosnf

could be used instead of the simpler form given above
which is obtained by setting all coefficients C, equal to
zero except for C,. The properties of the N-port so formed
can be calculated from (2). So, for instance, the wave
impedance matrix [ Z] is given by [3]

[z]=[U]7'[T]. (7)
The wave impedance matrix, or its inverse, the wave admit-
tance matrix, can readily be reduced to the corresponding
matrix for the actual multiport, formed by the planar
circuit, based on knowledge of either the electric or the
magnetic field distribution along the periphery.

From (7) it is evident that the calculation of the imped-
ance matrix of the N-port involves the inversion of an in
general complex N X N-matrix. In case the N-port shows
some form of symmetry it is often possible to find a way to
reduce the computations involved considerably, as in the
following case. Consider an N-fold symmetric junction.
Assume that we divide the periphery of the junction into N
equal segments. The [U]- and the [7 ]-matrices then reflect
the N-fold symmetry of the junction. So, for instance, the
[U]-matrix can be written

U UL U - Uy

Uy u 4o Ui
[U]l=|Uv—r Uy U - Uysf. ®)

R /TP

Because of symmetry, there will only be N independent
matrix entries U,,. Such a matrix can be manipulated by
using the eigenvalue approach. In particular, for such a
matrix based on N-fold rotational symmetry the eigenval-
ues will be known linear functions of the matrix entries
and vice versa [9]. Consequently, the matrix [U] can be
inverted in the following direct way: 1) express the eigen-
values A,,m=1,---,N as a linear function of the matrix
entries U,;; 2) determine the scalar inverses A,,' =1/A ;
and 3) express the N-matrix entries U, ' as a linear func-
tion of A, m=1,-- -, N. Specifically
N

}\m = 2 Unej(m—l)(n‘l)(ZW/N) (9)
n=1
1 N
Ur;l — N 2 A;le*j(mvl)(n-—l)(Zw/N)’ (10)
n=1

The inverse matrix [U]™! is given in terms of the N-matrix
entries U,, ' by the same sort of expression as (8).

As a check on the procedure, a comparison was made
between theoretical calculations of the equivalent admit-
tance and experimental results published previously on a
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Fig. 1. The real part of the equivalent admittance of a threefold sym-
metric hexagonal resonator. The boundary 1s divided into (a) 12 seg-
ments and (b) 48 segments. Design data: 47M, = 0.08 T, 47M, = 0.052
T, gerr = 2.0, AH;3 4, = 4377 kat/m, ¢, = 14.7, H,— 0+, D =4.06 mm.
t=3.94 mm.

circular garnet resonator [8]. In the theoretical calculation
the tangential field H in (2) is, as usual, assumed to be 0 at
the periphery, except where the striplines connect to the
resonator, at which points it is assumed to be constant. The
wave impedance matrix entries Z{, Z{, and Z{ are then
calculated on the basis of the average electric field across
the striplines

p—1 .
_ p—k _
Z0=z + 3 > [zlw)+ zl(H)], [=1,2,3

k=1 an

where a =(/ —1)N/3+1, and it is assumed that each port
occupies p segments. From the wave impedance matrix
entries, the equivalent impedance or admittance can be
calculated [8].[9]. It should be pointed out that there was
essentially no difference in the values computed using the
integral equation method and the values computed analyti-
cally using Bessel functions, and that the computational
times were now similar.

III. THE FREQUENCY DEPENDENCE OF THE
EQUIVALENT ADMITTANCE OF 6-SIDED RESONATORS

Although hexagonal-type resonators have been used ex-
tensively in planar Y-junction circulators during the last
few years, relatively little has been published about the
properties of such circulators. In a recent paper Helszajn,
James, and Nisbet estimated the Q factor for side and apex
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Fig. 2. The imaginary part of the equivalent admittance of the resonator
in Fig. 1. (a) 12 segments. (b) 48 edge segments.

coupled triangular circulators to be three times and one-
third, respectively, as large as for disk circulators by using
a lowest order mode approximation [10]. This result seemed
to agree with experiment. However, since the presence of
coupling lines causes a disturbance of the field configura-
tions, it can be assumed that these relations apply only for
small coupling angles. This section is intended to show,
with the aid of various graphs, the properties of
hexagonal-type circulators over a wide frequency band
centered about the lowest order operating frequency in the
low-field limit. The basic resonator is assumed to be 6-sided
and three-fold symmetric (see the inset of Fig. 1). The sides
with width W connect to the striplines. According to the
usual assumption, the tangential magnetic field is assumed
to be zero along the sides with width W, and constant
across the striplines. The adequacy of these assumptions is
attested to by the agreement between theory and experi-
ment for circular disk resonators.

Since the circuit in the present case is assumed to have
only three-fold symmetry, it is in general not possible to
use the arguments of the previous section to invert the [U]
matrix directly. However, if there are for instance 12
segments around the periphery (see Figs. 1(a),2(a)) chosen
so that the three-fold symmetry is preserved, thel} [U] can
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be written in the form
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Uiy U, Uz Uy |Us Ug Uy Ug | Uy Uy Us Uy

Uy Uy Uy Uy | Us Ug Uy Ug | Uy Uy Us Uy

Uy Uy Uy Uy |\ Us Ug Uy Uy | Uy Uy Uy Uy

Un Up Usg Uy |Us Ug Uy Ug | Uy Up Uy Uy

Uy Uy, Uy Uy | U, Uy Uy Uy Us Ug Uy Us {Ul} {U2} {[_]3}

[U] — U Up Us Uy | Uy Uy Uy Uy | Us Ug Uy Uy - {U} {U } {U } (12)

Upn Up Uz Uy Uy Uy Uy Uy | Us U Uy Uy 3 ! 2
Uy Up Uy Uy |Un Up Uz Uy | Us Ug Uy Ug (G} (G {0
Us Ug Uy Ug | Uy Uy Uy Uy | Uy Uy Uy Uy

Us Ug Uy Ug| Uy Uy Us Uu | Uy Uy Uy Uy

Us Usg Uy Ug Uy Up Ujpy Uy | Uy Uy Uy Uy

Us U Uy U;g | Uy Up Uy Uy | Uy Uy Uy Uy

Ull U12 Ul3 Ul4
(| G Ua Us U
(]31 l]32 I]?:3 Lf34
U41 l]42 []43 U44
UIS U16 U17 U18
(| U U Un U
Us U Uy U
Us Us Uy Ug
1]51 %2 (J;B []54
(wy=| G U U Us
U71 U72 U73 U74
U81 U82 U83 l]84

will be four-dimensional. The 12-dimensional inverse ma-
trix [U]~" will have a similar form with {U,}, {U,}, and
(U3} replaced by four-dimensional matrices {U; '}, {U; '},
and {U; '}. Note that the mathematical form is the same as
that for the [S], [Z], or Y] matrix representations of the
symmetrical 3-port circulator. The linear eigenvalue -S
matrix entry relations for this device [9] can be used to
define four-dimensional eigenmatrices {A,}, {A,}, {A;}
given by

M ={U) G} {U} (13)

M) ={U)+{U}e?? + {Uyye 7?3 (14)

M) ={UH{G) e+ {Use™73. (15)
Once the inverses of these four-dimensional matrices
AL {A '), {23} have been determined, then similar
relations may be used to find (U '}, {U;''}), and {U; '},

(G = () + (57 + )3 (16)
(G Y= (N (A7 e 22+ (A5 ") e?%) /3 (17)
(7= (A + (A7) e + (A5 e7273) /3. (18)

The problem of inverting such a 12-dimensional matrix has

thus been reduced to the simpler problem of inverting
three four-dimensional matrices by the use of symmetry
arguments since

vy ("} (v

= {u} (o'} (&'}
{h {u') (v

Figs. 1 and 2 give plots of the normalized conductance
and normalized susceptance versus frequency for symmet-
rical six-sided resonators with various ratios of the stripline
width W to the side width W1 and biased below resonance.
The calculations have been performed with the constant C,
in the Green’s function set to 0.5. This value is different
from that chosen by other authors, but we have found it to
lead to a rapid convergence for a relatively small number
of points around the periphery. This can be seen from the
small difference in the curves for N =12 and N =48 seg-
ments about the periphery in Figs. 1 and 2. The segment
lengths on any side were taken to be the same, as in the
inset of Fig. 1(a). For 12 segments only 4 X4 matrices need
be inverted. For 4 X4 matrices a simple subroutine can be
written to perform the inversion without the need to have
available the matrix inverse command of Basic, for ins-
tance [11]. Consequently, the analysis may be performed
on a small desk-top calculator.

It can be shown that the equivalent admittance in the
limit of small magnetic fields is given by

8Y(w)
oH

(19)

Y(o,H) =3 TN

(20)

where H is the applied magnetic field and Y,(w) refers to
the eigensusceptance. Consequently, it will be characterized
by a susceptance slope parameter and a frequency-depen-
dent conductance in the region where the susceptance is
small. The conductance curves have been normalized to 1
at the frequency for which the susceptance is zero, al-
though in fact the calculations were performed for very
small magnetic fields of 107* T. It is apparent from Fig. 3
that the frequency dependence of G changes substantially
as the aspect ratio W/ W1 is varied. For W/W1~ 0.6 (the
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Fig. 3. The equivalent admittance of the resonator in Fig. 1 at the
high-field limit (H, — o0).

geometry given in the inset figure) it has a broad minimum.
In this case, the equivalent admittance can be well ap-
proximated by a constant conductance shunted by a pure
susceptance—the usual approximation—over more than
an octave bandwidth. For large aspect ratios W/W1, G
becomes a strongly decreasing function of frequency and
for W/W1=2, G has approximately a 1/f* dependence
(see the dashed curves f in Fig. 1(a),(b)). This suggests that
far above resonance, the behavior will be nearly frequency
independent [12]. The calculations given in Fig:. 3 for the
above resonance case confirm this conclusion.

The plots given in Fig. 2 of the susceptance versus
frequency are of interest because they show the depen-
dence of the susceptance slope on the aspect ratio W/W1.
As the aspect ratio decreases the susceptance slope de-
creases. When the aspect ratio is 1 (hexagonal boundary),
the susceptance slope is very close to that estimated for a
disk resonator by Fay and Comstock [13] and given by the
long-dash curve. As the aspect ratio becomes very small,
then the susceptance slope approaches that estimated by
Helszajn, James, and Nisbet for the apex coupled triangu-
lar resonator [10] and given by the short-dash curve. This
result is 1/3 of the Fay, Comstock result. '

IV. CoNCLUSIONS

In this paper it has been demonstrated that linear matrix
entry—eigenvalue relations derived from symmetry may be
used to greatly reduce the dimensions of the matrices
which must be inverted in order to apply the integral
equation method to planar two-dimensional problems with
symmetry. So, for instance, in the case of six-sided type
resonators with threefold symmetry there is a factor of 3
reduction. Furthermore, it was demonstrated that if the
Green’s function constant C, is taken to be 0.5, good
accuracy is obtained with only 12 segments around the
boundary so that it is possible to program the entire
analysis on a desk-top calculator. Calculations of the
equivalent admittance of threefold symmetric, 6-sided reso-
nators biased below resonance indicate that an aspect ratio
of 0.6 (stripline width to side length) yields a nearly
constant conductance shunted by a pure susceptance over
greater than one octave bandwidth. The susceptance slope
parameter decreases with decreasing aspect ratio in agree-
ment with previous theoretical and experimental results.
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